Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models.
نویسنده
چکیده
Line transect sampling is one of the most widely used methods for animal abundance assessment. Standard estimation methods assume certain detection on the transect, no animal movement, and no measurement errors. Failure of the assumptions can cause substantial bias. In this work, the effect of error measurement on line transect estimators is investigated. Based on considerations of the process generating the errors, a multiplicative error model is presented and a simple way of correcting estimates based on knowledge of the error distribution is proposed. Using beta models for the error distribution, the effect of errors and of the proposed correction is assessed by simulation. Adequate confidence intervals for the corrected estimates are obtained using a bootstrap variance estimate for the correction and the delta method. As noted by Chen (1998, Biometrics 54, 899-908), even unbiased estimators of the distances might lead to biased density estimators, depending on the actual error distribution. In contrast with the findings of Chen, who used an additive model, unbiased estimation of distances, given a multiplicative model, lead to overestimation of density. Some error distributions result in observed distance distributions that make efficient estimation impossible, by removing the shoulder present in the original detection function. This indicates the need to improve field methods to reduce measurement error. An application of the new methods to a real data set is presented.
منابع مشابه
Performance of transect and point count underwater visual census methods
A simulation approach was used to study bias and variability of density estimates of fish using the transect and point count underwater visual census methods. Three experiments were conducted to examine the effects of fish density, sampling effort, and the speed of fish in relation to the observer. Fish density and sampling effort did not significantly bias estimates of fish density using eithe...
متن کاملارزیابی آزمون گاما و منحنیهای اندرو بهمنظور تخمین مقدار رسوب معلق حوزههای آبخیز جنوب و جنوب شرقی دریای خزر
Suspended sediment (SS) flux in a river is an important parameter for the watershed management. The large extend of watersheds areas and limited of sediment stations measurement have been caused that different methods have been developed to SS estimation. In this study, 42 sediment measurement stations existed in south and southeast of the Caspian Sea with over 20 year period was chosen. The ...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملCorrecting Measurement Error Bias in Interaction Models with Small Samples
Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2004